
Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Seminar of Advanced Exploitation Techniques, WS 2006/2007

hacking in physically addressable memory
a proof of concept

David Rasmus Piegdon

Supervisor: Lexi Pimenidis

Lehrstuhl für Informatik IV, RWTH Aachen

http://www-i4.informatik.rwth-aachen.de

February 21st 2006

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Table of Contents

1 Introduction

2 Accessing memory

3 Virtual address spaces

4 Gathering information

5 Injecting code

6 Prospects, Conclusion

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Table of Contents

1 Introduction

2 Accessing memory

3 Virtual address spaces

4 Gathering information

5 Injecting code

6 Prospects, Conclusion

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

physical addressable memory

“hacking in physically addressable memory”
• Hacking: using a technique for something it has not been

designed for
• Physically addressable memory: direct memory access,

“DMA”

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

hacking

• I will show mostly attacks
• So actually I will be cracking a systems security
• Exploiting et al is not hacking by definition
• “to hack” is mostly misused by media

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

hacking

• I will show mostly attacks
• So actually I will be cracking a systems security
• Exploiting et al is not hacking by definition
• “to hack” is mostly misused by media

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA

• DMA = Direct Memory Access
• Basic requirement for introduced approach
• Known for a long time: attacker has DMA -> 0wn3d

• 0wn3d by an iPod [1]
• and others [2, 3]

• This is a proof of concept

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Table of Contents

1 Introduction

2 Accessing memory

3 Virtual address spaces

4 Gathering information

5 Injecting code

6 Prospects, Conclusion

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Methods

Methods

Many ways to gain access to memory:
• special PCI cards (forensic, remote management cards)
• special PCMCIA cards
• FireWire (IEEE1394) DMA feature
• anything with DMA
• /dev/mem (Linux)
• memory dumps
• Suspend2Disk images
• Virtual machines
• . . .

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Methods

Generic problems of DMA attacks

• Swapping
• Multiple accessors at any time
• Caching (?)

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA hardware

DMA hardware

Hardware we may use is
• expensive
• specially crafted
• selfmade (some)
• rare
• not hot-pluggable (depends)
• one exception: FireWire (IEEE1394)

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA hardware

FireWire overview

FireWire a.k.a. iLink a.k.a. IEEE1394
• Hot-pluggable
• Wide-spread (even among laptops)
• Expansion Bus (like PCI or PCMCIA)
• Has DMA (if enabled by driver)
• Guaranteed bandwith feature
• Used alot for media-crunching
• Most people are not aware of abuse-factor

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA hardware

FireWire DMA

• DMA only enabled if driver says so
• Linux, BSD, MacOSX: by default (can be disabled)
• Windows: only for devices that “deserve” it (more later)

• If DMA -> full access, no restrictions

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA hardware

Windows DMA

Devices that “deserve” DMA on Windows:
SBP2 (storage) devices, like
• external disks
• iPod (has a disk)

The iPod can run Linux. . .

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA hardware

Windows DMA

Devices that “deserve” DMA on Windows:
SBP2 (storage) devices, like
• external disks
• iPod (has a disk)

The iPod can run Linux. . .

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA hardware

How to identify SBP2 devices

• Identify devices and features from their CSR config ROM
• Config ROM contains

• GUID: 8 byte globally unique ID (like MAC address)
• Identifier of driver
• List of supported features
• List of supported speeds
• . . .

• CSR config ROM can be faked (see [2])
• Copy config ROM from iPod and install it on any system

(→1394csrtool)
• Magically Windows permits DMA for any device

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA hardware

How to identify SBP2 devices

• Identify devices and features from their CSR config ROM
• Config ROM contains

• GUID: 8 byte globally unique ID (like MAC address)
• Identifier of driver
• List of supported features
• List of supported speeds
• . . .

• CSR config ROM can be faked (see [2])
• Copy config ROM from iPod and install it on any system

(→1394csrtool)
• Magically Windows permits DMA for any device

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA hardware

How to identify SBP2 devices

• Identify devices and features from their CSR config ROM
• Config ROM contains

• GUID: 8 byte globally unique ID (like MAC address)
• Identifier of driver
• List of supported features
• List of supported speeds
• . . .

• CSR config ROM can be faked (see [2])
• Copy config ROM from iPod and install it on any system

(→1394csrtool)
• Magically Windows permits DMA for any device

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA hardware

How to identify SBP2 devices

• Identify devices and features from their CSR config ROM
• Config ROM contains

• GUID: 8 byte globally unique ID (like MAC address)
• Identifier of driver
• List of supported features
• List of supported speeds
• . . .

• CSR config ROM can be faked (see [2])
• Copy config ROM from iPod and install it on any system

(→1394csrtool)
• Magically Windows permits DMA for any device

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA hardware

Joana Rutkowska will introduce methods to “Cheat Hardware
Based RAM Forensics” on Black Hat DC in March
(see http://theinvisiblethings.blogspot.com/2007/01/beyond-
cpu-cheating-hardware-based-ram.html)

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

DMA software

/dev/mem

• Gives access to physically addressed memory (in opposite
to /dev/kmem)

• Often needed by X-server
• Shall be obsoleted in future (X shall use DRI)
• Only gives access to lower 896MB RAM (only these are

mapped)

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

libphysical

One interface to access them all

• One generic interface: libphysical
• Backends for anything. . .
• Implemented so far:

• Filedescriptor (/dev/mem, memory dumps)
• FireWire

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Table of Contents

1 Introduction

2 Accessing memory

3 Virtual address spaces

4 Gathering information

5 Injecting code

6 Prospects, Conclusion

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

so what now?

• Once we got access. . . we can see a bunch of random
memory

• How does OS manage memory?

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Could parse kernel data-structures (if found). But they are
different for different
• hardware architecture
• operating system
• OS version
• and may not be documented (Windows)

Or we could do something else. . .

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Could parse kernel data-structures (if found). But they are
different for different
• hardware architecture
• operating system
• OS version
• and may not be documented (Windows)

Or we could do something else. . .

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Virtual address spaces

Virtual Address Spaces

• Multitasking Operating System
• System runs several processes “at once”
• Privilege separation required (see [5])
• Normally done in hardware

→ Each process has own virtual address space
→ Cannot access other processes memory or operating
systems memory
→ Cannot circumvent protection mechanism

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Virtual address spaces

Virtual Address Spaces

• Multitasking Operating System
• System runs several processes “at once”
• Privilege separation required (see [5])
• Normally done in hardware

→ Each process has own virtual address space
→ Cannot access other processes memory or operating
systems memory
→ Cannot circumvent protection mechanism

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Virtual address spaces

IA-32 Linux VM Layout

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Virtual address spaces

IA-32

IA-32 provides two techniques (that may be chained)
• Segmentation (required)
• Paging (optional)

Linux only uses paging, all segments span full 4GB of virtual
memory

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Virtual address spaces

IA-32 virtual (“logical”) address translation

(from [6])
losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Virtual address spaces

Done in hardware

• Translation done in hardware (by CPU)
• Hardware needs to know how to do it:

• Global Descriptor Table (GDT)
• Local Descriptor Table (LDT)
• Page Directory (PD), Page Tables (PT)

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Virtual address spaces

Once we got these structures, we know which page belongs
where in which address space
• Linux: GDT, LDT are irrelevant (flat segments)
• only PD is required
• PD references PTs
• PD may have recognisable patterns (has for Linux and

Windows)
• one PD per process

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Virtual address spaces

Once we got these structures, we know which page belongs
where in which address space
• Linux: GDT, LDT are irrelevant (flat segments)
• only PD is required
• PD references PTs
• PD may have recognisable patterns (has for Linux and

Windows)
• one PD per process

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Finding Address Translation Tables

Finding ATTs

Address Translation Tables (including PDs). . .
• depend on architecture
• depend on operating system
• may have recognisable patterns

→ create signature for (arch, OS). so far:
• (i386, Linux 2.4 and 2.6)
• (i386, Windows XP)

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Finding Address Translation Tables

Finding ATTs

Address Translation Tables (including PDs). . .
• depend on architecture
• depend on operating system
• may have recognisable patterns

→ create signature for (arch, OS). so far:
• (i386, Linux 2.4 and 2.6)
• (i386, Windows XP)

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Finding Address Translation Tables

Finding ATTs, details

1 Sieve all pages by simple, static pattern (e.g. 4 bytes)
2 For each possible do statistical analysis:

• Normalized Compression Distance (NCD) to known true
ATT

3 If possibility high enough, test integrity of data
(for IA-32: try to load referenced PTs)

4 If ok, its (most probably) an ATT

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Finding Address Translation Tables

Normalized Compression Distance

• Normalized Information Distance:
• Minimal amount of changes required between two

information
• Uses Kolmogorov Complexity (KC) (size of minimal

representation of information)
• Incalculable

• KC can be approximated by compressor
→ Normalized Compression Distance:

• Calculable
• Very versatile
• e.g. create relational trees of gene-sequences [4]

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Finding Address Translation Tables

Normalized Compression Distance

• Normalized Information Distance:
• Minimal amount of changes required between two

information
• Uses Kolmogorov Complexity (KC) (size of minimal

representation of information)
• Incalculable

• KC can be approximated by compressor
→ Normalized Compression Distance:

• Calculable
• Very versatile
• e.g. create relational trees of gene-sequences [4]

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Finding Address Translation Tables

Once a PD is found, we can do the translation by hand:
• Well-defined algorithm for architecture, e.g. for IA-32: [6]
• Implementation in software in liblinear. So far:

• IA-32 Protected Mode, without PAE36
(Linux with ≤ 4GB RAM)

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Table of Contents

1 Introduction

2 Accessing memory

3 Virtual address spaces

4 Gathering information

5 Injecting code

6 Prospects, Conclusion

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

So far
• We can access physical memory sources in a generic way

(libphysical)
• We can find and access virtual address spaces of

processes (liblinear)
Now we want to identify processes we found.

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Identifying Processes

#include <stdio.h>

int main(int argc, char**argv)
{
printf("my name is %s\n", argv[0]);
return 0;
}

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Identifying Processes

• argv, envv are somewhere in the address space
• They are on the stack, on first mapped pages below page
0xc0000

• NUL-separated vector with
• Path of binary
• Environment
• Arguments

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Identifying Processes

• argv, envv are somewhere in the address space
• They are on the stack, on first mapped pages below page
0xc0000

• NUL-separated vector with
• Path of binary
• Environment
• Arguments

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Identifying Processes

# OLDPWD=/home/lostrace PWD=/home/lostrace/documents/rwth/SEAT \
/attacks/userspace SHLVL=1 _=./victim \
./victim --arg=foo bar --baz

0xbfc5ff70 00 00 00 00 2e 2f 76 69 |...../vi| ARGV[]:
0xbfc5ff78 63 74 69 6d 00 2d 2d 61 |ctim.--a| [0] = bfc5ff74
0xbfc5ff80 72 67 3d 66 6f 6f 00 62 |rg=foo.b| [1] = bfc5ff7d
0xbfc5ff88 61 72 00 2d 2d 62 61 7a |ar.--baz| [2] = bfc5ff87
0xbfc5ff90 00 4f 4c 44 50 57 44 3d |.OLDPWD=| [3] = bfc5ff8b
0xbfc5ff98 2f 68 6f 6d 65 2f 6c 6f |/home/lo| [4] = NULL
0xbfc5ffa0 73 74 72 61 63 65 00 50 |strace.P|
0xbfc5ffa8 57 44 3d 2f 68 6f 6d 65 |WD=/home|
0xbfc5ffb0 2f 6c 6f 73 74 72 61 63 |/lostrac|
0xbfc5ffb8 65 2f 64 6f 63 75 6d 65 |e/docume|
0xbfc5ffc0 6e 74 73 2f 72 77 74 68 |nts/rwth|
0xbfc5ffc8 2f 53 45 41 54 2f 61 74 |/SEAT/at|
0xbfc5ffd0 74 61 63 6b 73 2f 75 73 |tacks/us|
0xbfc5ffd8 65 72 73 70 61 63 65 00 |erspace.|
0xbfc5ffe0 53 48 4c 56 4c 3d 31 00 |SHLVL=1.|
0xbfc5ffe8 5f 3d 2e 2f 76 69 63 74 |_=./vict|
0xbfc5fff0 69 6d 00 2e 2f 76 69 63 |im../vic|
0xbfc5fff8 74 69 6d 00 00 00 00 00 |tim.....|

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Identifying Processes

Stack arguments

• Find page, parse structure back-to-front:
• Last 5 bytes are always NUL
• Previous string is always binary
• Problem: difference between argument and environment?
• Solution: find argv[0] on stack and use userspaces
argv[]

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Identifying Processes

Finding Specific Processes

1 Find all virtual address spaces
2 For each: look if binary matches searched binary, e.g.:

• /usr/lib/mozilla-firefox/firefox-bin
• /usr/bin/gpg
• /usr/bin/psi
• /usr/bin/openssl
• /usr/bin/ssh-agent

3 If matches, steal a cookie or. . . a ssh-private key

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Identifying Processes

Finding Specific Processes

1 Find all virtual address spaces
2 For each: look if binary matches searched binary, e.g.:

• /usr/lib/mozilla-firefox/firefox-bin
• /usr/bin/gpg
• /usr/bin/psi
• /usr/bin/openssl
• /usr/bin/ssh-agent

3 If matches, steal a cookie or. . . a ssh-private key

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Secrets

Stealing SSH private keys

Let’s get dangerous!
Steal SSH private key from ssh-agent:

• agent keeps key decrypted, locked in memory
• has timeout-function to wipe keys from memory
• stalled in read()-syscall on socket
• no timer-signal to check for timeout
• checks timer only on query

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Secrets

Stealing SSH private keys

Let’s get dangerous!
Steal SSH private key from ssh-agent:

• agent keeps key decrypted, locked in memory
• has timeout-function to wipe keys from memory
• stalled in read()-syscall on socket
• no timer-signal to check for timeout
• checks timer only on query

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Secrets

finding SSH Private keys

• Where (in filesystem) do you keep your keys?
• $HOME/.ssh/*
• comment := path of key

[foo@bar:~]> ssh-add -l
1024 00:11:...:ee:ff /home/foo/.ssh/id_rsa (RSA)

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Secrets

typedef struct identity {
Key *key;
char *comment;
u_int death;

} Identity;

struct Key {
int type;
int flags;
RSA *rsa;
DSA *dsa;

};

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Secrets

finding SSH Private keys [2]

1 Find comment-string in heap
2 Find PTR to comment (struct identity) in heap
3 Follow key

4 Follow key->RSA and key->DSA

5 A lot of BIGNUMs (OpenSSL arbitrary precision integer
implementation). Copy relevant, test integrity (see [7,8]).

6 0wn3d

(yes, there are better methods to find the keys, but this is just a proof of concept)

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

resume

Resume

• So far: only read memory.
• Works with memory dumps
• No time to prepare an attack?
• → Just dump memory and do it later

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Table of Contents

1 Introduction

2 Accessing memory

3 Virtual address spaces

4 Gathering information

5 Injecting code

6 Prospects, Conclusion

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Attacking by Writing

• No more sword to be feared than the learned pen.
• Even the virtual one.

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Injecting the code

Inject where?

• Cannot allocate extra memory
• Cannot overflow a buffer (no IO with process)
• Need to overwrite code, data or stack
• Data: where IS data? is data mapped into multiple

processes?

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Injecting the code

Inject into code

• Shared objects, binaries: mapped into multiple processes
• → Affect multiple processes at same time
• Needs to be PIC1 (mapped at different locations)
• Is there room to inject code?

1Position Independent Code
losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Injecting the code

Inject into stack

• Stack is easy to find
• Affect one process at a time (one stack per thread)
• Inject into zero-padded pages containing ENV and ARG.
• Possibly overwrite these (if little space):

• ENV, ARG are rarely parsed
• typically only during init

• If overwrites ENV, ARG: possibly visible via
• /proc/$PID/environ
• /proc/$PID/cmdline

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Executing the code

Executing injected code

Use program-flow:
• Typical process calls subroutines
• Stackframes on stack, including return-address

→ Overwrite return-addresses

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Executing the code

Protection Mechanisms

• Stackoverflow protection checksums
• Can manipulate checksum as well

• Page-level no-execute enforcements (Intels EXB, AMDs NX)
• Manipulate Page Directory to allow execution of stack

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Communicating with shellcode

Rootshell?

• Royal leage of code-injection: interactive (root-)shell

→ Inject bindshell
• Network connection required
• Can be found simply:

• lsof -i -n
• Network sniffer
• IDS, NIDS

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Communicating with shellcode

Rootshell!

→ Inject Shellcode doing IEEE1394-stuff
• Big, complex payload (IEEE1394 handling)
• Attack via IEEE1394?

→ Inject Syscall-Proxy
• Victim, self need to be same architecture, OS, syscall

interface
• I attacked IA-32 from PPC. . .

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Communicating with shellcode

DMA-Shell

• Only thing that is for sure: DMA

→ Communication via DMA

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Communicating with shellcode

Special “Beachhead” Shellcode:

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Communicating with shellcode

• Payload small (536 Bytes, yet big for shellcode)
• Independent of attackers arch, OS
• Only DMA required

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Table of Contents

1 Introduction

2 Accessing memory

3 Virtual address spaces

4 Gathering information

5 Injecting code

6 Prospects, Conclusion

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Prospects

• Kernelspace Modifications:
• Shellcode that injects LKM?
• /dev/kmem already emulated by liblinear
• Live kernel patching?

• Bootstrapping custom operating systems

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Conclusion

• DMA attacks are mature
• Access to memory → 0wn3d!
• Keep your firewire-ports secured
• Some of the tools (libphysical, liblinear) can also

be used for forensics

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Questions?

Thank you for your attention!

All tools will be released at
http://david.piegdon.de/products.html

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

Thanks. . .

• Maximillian Dornseif, Christian N. Klein and Michael
Becher (basic idea)

• Lexi Pimenidis (supervisor)
• Timo Boettcher and Alexander Neumann (help)
• Swantje Staar (help with english)
• Chaos Computer Club Cologne (in general)

Thank you!

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

References (FireWire, DMA Attacks)

1 Michael Becher, Maximillian Dornseif, and Christian N.
Klein. Firewire - all your memory are belong to us. 2005.

2 Adam Boileau. Hit by a bus: Physical access attacks with
firewire. Ruxcon 2006.

3 Mariusz Burdach. Finding digital evidence in physical
memory. 2006.

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

References

4 Rudi Cilibrasi and Paul M. B. Vitányi. Clustering by
compression. IEEE transactions on information theory, vol.
51, 2005.

5 Otto Spaniol et al. Systemprogrammierung, Skript zur
Vorlesung an der RWTH Aachen. Wissenschaftsverlag
Mainz; Aachener Beitraege zur Informatik (ABI), 2002.
ISBN 3-86073-470-9.

6 Intel Corp. Intel 64 and IA-32 Architectures Software
DeveloperâĂŹs Manual.

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory



Introduction Accessing memory Virtual address spaces Gathering information Injecting code Prospects, Conclusion

References

7 Bruce Schneier. Applied Cryptography (Second Edition).
John Wiley & Sons, Inc, 1996. ISBN 0-471-11709-9.

8 John Viega and Matt Messier and Pravir Chandra.
Network Security with OpenSSL. O’Reilly, 2002. ISBN
0-596-00270-X.

losTrace A.K.A. David R. Piegdon <david.rasmus.piegdon@rwth-aachen.de> RWTH Aachen University of Technology

hacking in physically addressable memory


	Introduction
	

	Accessing memory
	Methods
	DMA hardware
	DMA software
	libphysical

	Virtual address spaces
	Virtual address spaces
	Finding Address Translation Tables

	Gathering information
	Identifying Processes
	Secrets
	resume

	Injecting code
	Injecting the code
	Executing the code
	Communicating with shellcode

	Prospects, Conclusion
	

