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physical addressable memory

“hacking in physically addressable memory”
• Hacking: using a technique for something it has not been

designed for
• Physically addressable memory: direct memory access,

“DMA”
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hacking

• I will show mostly attacks
• So actually I will be cracking a systems security
• Exploiting et al is not hacking by definition
• “to hack” is mostly misused by media
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DMA

• DMA = Direct Memory Access
• Basic requirement for introduced approach
• Known for a long time: attacker has DMA -> 0wn3d

• 0wn3d by an iPod [1]
• and others [2, 3]

• This is a proof of concept
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Methods

Methods

Many ways to gain access to memory:
• special PCI cards (forensic, remote management cards)
• special PCMCIA cards
• FireWire (IEEE1394) DMA feature
• anything with DMA
• /dev/mem (Linux)
• memory dumps
• Suspend2Disk images
• Virtual machines
• . . .
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Methods

Generic problems of DMA attacks

• Swapping
• Multiple accessors at any time
• Caching (?)
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DMA hardware

DMA hardware

Hardware we may use is
• expensive
• specially crafted
• selfmade (some)
• rare
• not hot-pluggable (depends)
• one exception: FireWire (IEEE1394)
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DMA hardware

FireWire overview

FireWire a.k.a. iLink a.k.a. IEEE1394
• Hot-pluggable
• Wide-spread (even among laptops)
• Expansion Bus (like PCI or PCMCIA)
• Has DMA (if enabled by driver)
• Guaranteed bandwith feature
• Used alot for media-crunching
• Most people are not aware of abuse-factor
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DMA hardware

FireWire DMA

• DMA only enabled if driver says so
• Linux, BSD, MacOSX: by default (can be disabled)
• Windows: only for devices that “deserve” it (more later)

• If DMA -> full access, no restrictions
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DMA hardware

Windows DMA

Devices that “deserve” DMA on Windows:
SBP2 (storage) devices, like
• external disks
• iPod (has a disk)

The iPod can run Linux. . .
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DMA hardware

How to identify SBP2 devices

• Identify devices and features from their CSR config ROM
• Config ROM contains

• GUID: 8 byte globally unique ID (like MAC address)
• Identifier of driver
• List of supported features
• List of supported speeds
• . . .

• CSR config ROM can be faked (see [2])
• Copy config ROM from iPod and install it on any system

(→1394csrtool)
• Magically Windows permits DMA for any device
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DMA hardware

Joana Rutkowska will introduce methods to “Cheat Hardware
Based RAM Forensics” on Black Hat DC in March
(see http://theinvisiblethings.blogspot.com/2007/01/beyond-
cpu-cheating-hardware-based-ram.html)
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DMA software

/dev/mem

• Gives access to physically addressed memory (in opposite
to /dev/kmem)

• Often needed by X-server
• Shall be obsoleted in future (X shall use DRI)
• Only gives access to lower 896MB RAM (only these are

mapped)
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libphysical

One interface to access them all

• One generic interface: libphysical
• Backends for anything. . .
• Implemented so far:

• Filedescriptor (/dev/mem, memory dumps)
• FireWire
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so what now?

• Once we got access. . . we can see a bunch of random
memory

• How does OS manage memory?
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Could parse kernel data-structures (if found). But they are
different for different
• hardware architecture
• operating system
• OS version
• and may not be documented (Windows)

Or we could do something else. . .
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Virtual address spaces

Virtual Address Spaces

• Multitasking Operating System
• System runs several processes “at once”
• Privilege separation required (see [5])
• Normally done in hardware

→ Each process has own virtual address space
→ Cannot access other processes memory or operating
systems memory
→ Cannot circumvent protection mechanism
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Virtual address spaces

IA-32 Linux VM Layout
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Virtual address spaces

IA-32

IA-32 provides two techniques (that may be chained)
• Segmentation (required)
• Paging (optional)

Linux only uses paging, all segments span full 4GB of virtual
memory
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Virtual address spaces

IA-32 virtual (“logical”) address translation

(from [6])
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Virtual address spaces

Done in hardware

• Translation done in hardware (by CPU)
• Hardware needs to know how to do it:

• Global Descriptor Table (GDT)
• Local Descriptor Table (LDT)
• Page Directory (PD), Page Tables (PT)
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Virtual address spaces

Once we got these structures, we know which page belongs
where in which address space
• Linux: GDT, LDT are irrelevant (flat segments)
• only PD is required
• PD references PTs
• PD may have recognisable patterns (has for Linux and

Windows)
• one PD per process
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Finding Address Translation Tables

Finding ATTs

Address Translation Tables (including PDs). . .
• depend on architecture
• depend on operating system
• may have recognisable patterns

→ create signature for (arch, OS). so far:
• (i386, Linux 2.4 and 2.6)
• (i386, Windows XP)
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Finding Address Translation Tables

Finding ATTs, details

1 Sieve all pages by simple, static pattern (e.g. 4 bytes)
2 For each possible do statistical analysis:

• Normalized Compression Distance (NCD) to known true
ATT

3 If possibility high enough, test integrity of data
(for IA-32: try to load referenced PTs)

4 If ok, its (most probably) an ATT
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Finding Address Translation Tables

Normalized Compression Distance

• Normalized Information Distance:
• Minimal amount of changes required between two

information
• Uses Kolmogorov Complexity (KC) (size of minimal

representation of information)
• Incalculable

• KC can be approximated by compressor
→ Normalized Compression Distance:

• Calculable
• Very versatile
• e.g. create relational trees of gene-sequences [4]
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Finding Address Translation Tables

Once a PD is found, we can do the translation by hand:
• Well-defined algorithm for architecture, e.g. for IA-32: [6]
• Implementation in software in liblinear. So far:

• IA-32 Protected Mode, without PAE36
(Linux with ≤ 4GB RAM)
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So far
• We can access physical memory sources in a generic way

(libphysical)
• We can find and access virtual address spaces of

processes (liblinear)
Now we want to identify processes we found.
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Identifying Processes

#include <stdio.h>

int main(int argc, char**argv)
{
printf("my name is %s\n", argv[0]);
return 0;
}
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Identifying Processes

• argv, envv are somewhere in the address space
• They are on the stack, on first mapped pages below page
0xc0000

• NUL-separated vector with
• Path of binary
• Environment
• Arguments
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Identifying Processes

# OLDPWD=/home/lostrace PWD=/home/lostrace/documents/rwth/SEAT \
/attacks/userspace SHLVL=1 _=./victim \
./victim --arg=foo bar --baz

0xbfc5ff70 00 00 00 00 2e 2f 76 69 |...../vi| ARGV[]:
0xbfc5ff78 63 74 69 6d 00 2d 2d 61 |ctim.--a| [0] = bfc5ff74
0xbfc5ff80 72 67 3d 66 6f 6f 00 62 |rg=foo.b| [1] = bfc5ff7d
0xbfc5ff88 61 72 00 2d 2d 62 61 7a |ar.--baz| [2] = bfc5ff87
0xbfc5ff90 00 4f 4c 44 50 57 44 3d |.OLDPWD=| [3] = bfc5ff8b
0xbfc5ff98 2f 68 6f 6d 65 2f 6c 6f |/home/lo| [4] = NULL
0xbfc5ffa0 73 74 72 61 63 65 00 50 |strace.P|
0xbfc5ffa8 57 44 3d 2f 68 6f 6d 65 |WD=/home|
0xbfc5ffb0 2f 6c 6f 73 74 72 61 63 |/lostrac|
0xbfc5ffb8 65 2f 64 6f 63 75 6d 65 |e/docume|
0xbfc5ffc0 6e 74 73 2f 72 77 74 68 |nts/rwth|
0xbfc5ffc8 2f 53 45 41 54 2f 61 74 |/SEAT/at|
0xbfc5ffd0 74 61 63 6b 73 2f 75 73 |tacks/us|
0xbfc5ffd8 65 72 73 70 61 63 65 00 |erspace.|
0xbfc5ffe0 53 48 4c 56 4c 3d 31 00 |SHLVL=1.|
0xbfc5ffe8 5f 3d 2e 2f 76 69 63 74 |_=./vict|
0xbfc5fff0 69 6d 00 2e 2f 76 69 63 |im../vic|
0xbfc5fff8 74 69 6d 00 00 00 00 00 |tim.....|
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Identifying Processes

Stack arguments

• Find page, parse structure back-to-front:
• Last 5 bytes are always NUL
• Previous string is always binary
• Problem: difference between argument and environment?
• Solution: find argv[0] on stack and use userspaces
argv[]
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Identifying Processes

Finding Specific Processes

1 Find all virtual address spaces
2 For each: look if binary matches searched binary, e.g.:

• /usr/lib/mozilla-firefox/firefox-bin
• /usr/bin/gpg
• /usr/bin/psi
• /usr/bin/openssl
• /usr/bin/ssh-agent

3 If matches, steal a cookie or. . . a ssh-private key
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Secrets

Stealing SSH private keys

Let’s get dangerous!
Steal SSH private key from ssh-agent:

• agent keeps key decrypted, locked in memory
• has timeout-function to wipe keys from memory
• stalled in read()-syscall on socket
• no timer-signal to check for timeout
• checks timer only on query
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Secrets

finding SSH Private keys

• Where (in filesystem) do you keep your keys?
• $HOME/.ssh/*
• comment := path of key

[foo@bar:~]> ssh-add -l
1024 00:11:...:ee:ff /home/foo/.ssh/id_rsa (RSA)
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Secrets

typedef struct identity {
Key *key;
char *comment;
u_int death;

} Identity;

struct Key {
int type;
int flags;
RSA *rsa;
DSA *dsa;

};
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Secrets

finding SSH Private keys [2]

1 Find comment-string in heap
2 Find PTR to comment (struct identity) in heap
3 Follow key

4 Follow key->RSA and key->DSA

5 A lot of BIGNUMs (OpenSSL arbitrary precision integer
implementation). Copy relevant, test integrity (see [7,8]).

6 0wn3d

(yes, there are better methods to find the keys, but this is just a proof of concept)
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resume

Resume

• So far: only read memory.
• Works with memory dumps
• No time to prepare an attack?
• → Just dump memory and do it later
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Attacking by Writing

• No more sword to be feared than the learned pen.
• Even the virtual one.
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Injecting the code

Inject where?

• Cannot allocate extra memory
• Cannot overflow a buffer (no IO with process)
• Need to overwrite code, data or stack
• Data: where IS data? is data mapped into multiple

processes?
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Injecting the code

Inject into code

• Shared objects, binaries: mapped into multiple processes
• → Affect multiple processes at same time
• Needs to be PIC1 (mapped at different locations)
• Is there room to inject code?

1Position Independent Code
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Injecting the code

Inject into stack

• Stack is easy to find
• Affect one process at a time (one stack per thread)
• Inject into zero-padded pages containing ENV and ARG.
• Possibly overwrite these (if little space):

• ENV, ARG are rarely parsed
• typically only during init

• If overwrites ENV, ARG: possibly visible via
• /proc/$PID/environ
• /proc/$PID/cmdline
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Executing the code

Executing injected code

Use program-flow:
• Typical process calls subroutines
• Stackframes on stack, including return-address

→ Overwrite return-addresses
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Executing the code

Protection Mechanisms

• Stackoverflow protection checksums
• Can manipulate checksum as well

• Page-level no-execute enforcements (Intels EXB, AMDs NX)
• Manipulate Page Directory to allow execution of stack
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Communicating with shellcode

Rootshell?

• Royal leage of code-injection: interactive (root-)shell

→ Inject bindshell
• Network connection required
• Can be found simply:

• lsof -i -n
• Network sniffer
• IDS, NIDS
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Communicating with shellcode

Rootshell!

→ Inject Shellcode doing IEEE1394-stuff
• Big, complex payload (IEEE1394 handling)
• Attack via IEEE1394?

→ Inject Syscall-Proxy
• Victim, self need to be same architecture, OS, syscall

interface
• I attacked IA-32 from PPC. . .
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Communicating with shellcode

DMA-Shell

• Only thing that is for sure: DMA

→ Communication via DMA
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Communicating with shellcode

Special “Beachhead” Shellcode:
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Communicating with shellcode

• Payload small (536 Bytes, yet big for shellcode)
• Independent of attackers arch, OS
• Only DMA required
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Prospects

• Kernelspace Modifications:
• Shellcode that injects LKM?
• /dev/kmem already emulated by liblinear
• Live kernel patching?

• Bootstrapping custom operating systems
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Conclusion

• DMA attacks are mature
• Access to memory → 0wn3d!
• Keep your firewire-ports secured
• Some of the tools (libphysical, liblinear) can also

be used for forensics
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Questions?

Thank you for your attention!

All tools will be released at
http://david.piegdon.de/products.html
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Thanks. . .

• Maximillian Dornseif, Christian N. Klein and Michael
Becher (basic idea)

• Lexi Pimenidis (supervisor)
• Timo Boettcher and Alexander Neumann (help)
• Swantje Staar (help with english)
• Chaos Computer Club Cologne (in general)

Thank you!
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