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Abstract

Several advances in hacking via DMA will be introduced; attacks to steal ssh pri-
vate keys, inject code and obtain an interactive shell via firewire only will be presented.

All of these advances are based on data structures that are required by the CPU
to provide virtual address spaces for each process running on the system. These data
structures are searched and then parsed to solve the puzzle of randomly scattered
pages in the physical memory, thus being able to read and write in each processes
virtual address space.

Most of the attacks introduced will be adaptable to all kinds of operating system
and hardware combinations, but as a sample target, Linux on an IA-32 system with
the kernel-options CONFIG NOHIGHMEM or CONFIG HIGHMEM4G, CONFIG VMSPLIT 3G and
CONFIG PAGE OFFSET=0xC0000000 is used.
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1 Introduction

Several advances in hacking via DMA will be introduces. As a foundation for the attacks,
libphysical and liblinear will be introduced to access virtual address spaces of any
process on the to-be-attacked host.

To have a simple, generic interface for all kinds of physical memory sources, we im-
plemented libphysical, where backends for new memory sources may be plugged in. It
includes backends for IEEE1394 and filedescriptors so far.

In section 2, libphysical will be introduced and different backends with their ad-
vantages and disadvantages will be discussed.

Once, access to the physical memory of a system is obtained, there are two obvious
ways to extract useful information from it:

• It is possible to parse the operating systems internal data structures holding all
relevant information about loaded drivers, running processes et al.

• It is possible to use the information that the operating system provides to the hard-
ware to tell it about the virtual address spaces of each process.

The first scenario will not work between different operating systems and architectures,
it will be necessary to write a parser for each combination of them, possibly even for
different versions of the same operating system.

The latter uses an information structure that only changes between different architec-
tures, as the architecture relies on it. Furthermore there is a well defined algorithm for
using this information (implemented in hardware in the architecture, but well defined in
the reference manuals for this architecture, so system designers can provide valid data to
the hardware). On the other hand, the first approach will give much more information
about the system than the second, as we obtain all information directly from the kernel
structures, while using the second approach we only can enter virtual address spaces of
processes.

In [Bur06], an approach is introduced that parses kernel-structs of windows and Linux
kernels. In the following we will use the second approach for most attacks, as this seems
to be more robust and automatable. As the above mentioned paper is about finding an
attacker and not attacking, the forensic personal does know about the architecture, the
operating system and version and can build a copy of the system to test its tools, while
an attacker only can guess the architecture and operating system and needs more robust
tools for his attacks. (Obviously this is only a short-term argument, as an attacker can
also write such tools for all known OS version and architecture combinations).

In section 3, liblinear, an interface to access virtual address spaces, will be intro-
duced. It incorporates a backend for IA-321 and functions to find virtual address spaces.

In section 4, several attacks will be introduces, ranging from simple information
gathering up to obtaining an interactive shell via DMA only.

In section 5, prospects will be given, what further kinds of attacks seem to be possible
and/or may be of interest.

1This backend is missing algorithms for less-used operation-modes of the IA-32 architecture, but it
will work at least for most kinds of the Linux kernels (≤ 4GB RAM). It has not yet been tested with
Windows or MacOS X and is missing features (Virtual-8086 mode) to work with DOS-processes running
inside Windows.
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2 Physically addressable memory sources: libphysical

Typically, processes and users are never granted access to physically addressed memory, as
this addressing mode circumvents any protection methods provided by virtual addressing
to separate processes from each other and the operating system. Only the operating
system may use physical addressing to prepare address spaces for each running process,
manage these, access special memory of extension cards and alike, or even only during
bootstrapping as Linux does. But there are several ways of obtaining access to physical
addressed memory. As stated, physical addressing will circumvent protection mechanisms.
Thus access to it should require system administrator rights or physical access to the
hardware of the underlying system.

To have a simple, generic interface for all kinds of physical memory sources, we im-
plemented a simple interface, where backends for new memory sources may be plugged
in. This interface is called libphysical and includes so far backends for IEEE1394 and
filedescriptors.

Modern computer hardware provides many protection and memory management me-
chanisms in hardware. This includes hardware to provide a virtual address space for each
process, protection mechanisms to restrict a process to its own resources only, paging
to extend memory to harddisks and fragment available memory, caching to access fre-
quently used memory faster, and more. Obviously, all these features are architecture and
operating-system dependent. An interested reader may read documentation on system
programming (e.g. [S+02] or [Int06d, Int06e]) to obtain further information.

Assume a process with its virtual address space and its corresponding set of pages.
Each page in this virtual address space may be:

• a real, physical memory page that is mapped into the virtual address space, possibly
cached in the CPU’s cache,

• a used page that is swapped to other media, like a harddisk

• (depending on the operating system) a mapped buffer or file

• not used, and thus not mapped

Swapped pages will and mapped pages may be loaded only on demand (i.e. when
the process tries to access the page), as access to a non-mapped page by a process will
generate a page fault and the operating system then may map the demanded page. Access
to completely unused pages, via this mechanism, will create the well known segmentation
fault.

When one obtains access to physically addressed memory, that is a set of pages, each
page may be a page of memory of a random process, a buffer page of a process, a page used
by the operating system (kernel code, kernel data, kernel stack, IO buffer, ...), an unused
page or a page used to give the CPU information on how to handle virtual addresses, as
this is done in hardware. The latter pages will be called address translation tables; for
more information on these, see section 3.1.
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2.1 Generic problems: swapping, multiple accessors, caching, address

translation

As stated, virtual pages of a process may be swapped, buffers may only be created on
demand, and pages may be cached in other memory.

As physical memory only gives access to pages that are mapped from this physical
memory, we will be unable to access swapped pages and buffers that have not been mapped.
There is no simple solution to access this data; it is required to call special operating system
routines to do this; but as access to physical memory does not include access to the CPU
by itself, and these routines may be different from operating system to operating system,
there is no simple solution.

Depending on the method used to access the memory, a parallel accessor may be using
the same memory at the same time. E.g. when using firewire (see 2.2) to read a page of a
currently running task, this task may access, thus read or write this page at the same time.
For instance, if both CPU and another accessor write at the same moment to the same
address location, it is undefined, which write access will be performed and thus override
the other one (actually it depends on timing and caching, but we have no way of knowing,
when the systems CPU accesses a page and if it is cached). Also, reading and writing at
the same time may be impossible via the given method; thus many atomic commands used
for process synchronization, like “test and set”, will not exist. Caching may also prevent
these.

If a page is cached in another, faster memory, a copy of it will typically reside in
physical memory. In most cases we will not know if a page is cached or not; on IA-32
however the address translation tables contain a flag for each page telling the CPU if it may
be cached or not. Depending on the way used to access the memory, it may circumvent
the cache or not have access to it at all. When accessing a page, changes made by a task
running in parallel may not be visible to us immediately and changes made by us may be
invisible to a parallel task or maybe even overwritten by the cache at any time. Special
care needs to be taken to minimize this risk. When writing to pages, only choose pages
that are not cached or unlikely to be cached while writing; when reading pages, consider
that the data may change at any time or may have changed yet.

As stated above, on systems using paging, physical memory will mostly be a con-
catenation of random pages, each one either used by a random process or the operating
system. A minor part of these pages will be address translation tables, telling the CPU
what the virtual address space of different processes looks like. Where these pages are is
only known to the operating system and the CPU. For a detailed discussion, see section
3.1.

2.2 IEEE1394

IEEE1394, also known as firewire (Apple) or iLink (Sony), is an extension bus available
on many modern computer systems and devices. In contrast to USB, which is a serial
periphery bus, firewire is a high-speed serial expansion bus with features like guaranteed
bandwidth (which is of interest for many real-time applications, like media crunching),
DMA2 and the ability to connect multiple nodes with a single firewire-bus. The concept
of bus master and bus slaves, as known from USB, is only virtual. Typically when plugging
together a firewire bus, a node is randomly selected to be the master and manages this

2Direct Memory Access



8 2 PHYSICALLY ADDRESSABLE MEMORY SOURCES: LIBPHYSICAL

bus. Most of these nodes have the ability to be bus master.

DMA is implemented in hardware by the OHCI chip set; it is used to release the CPU
from I/O operations. Mechanisms of preventing unwanted access exist, but many drivers
do not activate these methods by default. In the case of windows, the operating system
can be tricked into giving DMA to any device (see section 2.2.2).

Up to 64 devices may be plugged into one bus. Each one will choose a bus-unique
node ID [0..63]; the bus master will have the highest node ID. All node IDs will be
sequential, starting with 0. Access to memory of a node will require a 10 bit field for the
bus ID, a 6 bit field for the node ID and a 48 bit address field. On Linux, libraw13943

provides an easy and portable interface to do this. Ideally, the full physical memory is
accessible via the 48 bit address field, mapped in this address space starting from 0x0;
around 0xffff f000 0000 several control state registers (CSRs) are located that provide
information about the given target node and the capabilities of the firewire device.

To disable the DMA-feature of firewire completely, load the ohci1394 module with
option phys dma=0 on Linux or set the security mode in open-firmware to something
different than “none” for apples powerbooks and ibooks.

For more information on the underlying hardware or protocols, please refer to [Pro00,
And99] or the libraw13943 documentation.

2.2.1 Physical security, attacks with embedded devices like iPod

Designing protection schemes of security systems should always include taking care of
physical security, even if the object of interest is a pure virtual one (like a secret key). In
this case, physical security, i.e. the restriction of access to the underlying hardware of a
running computer system, is often forgotten and thus weak.

In general, a professional attacker will most likely choose the weakest link of security
for his attacks. If he finds that going straight to the computer and stealing it, or plugging
an embedded device like the iPod into it is easier than other known attacks, he will try it.

Some typical physical attacks on computer systems are:

• booting custom operating system

• opening the case and attacking the hardware directly

• stealing the whole system or its harddisks

• installing cameras, microphones and key-loggers

• installing specially crafted PCMCIA cards

Firewire does not require to boot a custom operating system, to open the case, steal
parts of the hardware, install any hardware (except plugging in the firewire device) or
specially crafted hardware. Access via firewire is as easy as plugging in a firewire device,
like the iPod, letting it do its job and unplugging it.

On the other hand, plugging in firewire devices will generate syslog messaged on Linux
systems.

3libraw1394: http://www.linux1394.org/

http://www.linux1394.org/
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2.2.2 Problems with IEEE1394 DMA, solutions

Using firewire to access the memory of a running system may generate non maskable
interrupts (NMI) on the target system and even leave the operating system (Linux 2.6.17)
in a non-usable state. There are some laptops and workstations with on-board controllers
being disturbed by this, sometimes resulting in crashes. Computers with PCI extension
card, though, just worked fine during all tests. It is possible that the deeply incorporated
on-board controllers interfere with the CPU accessing the main memory. This needs to
be investigated.

Using libraw1394, it is possible to read different blocksizes of data via firewire. It
seems like different hardware does allow bigger blocks to be read at different addresses.
4 byte blocks should always work; 1024 byte blocks may be read with some hardware,
if the address resolves to the physical memory. Control state registers are likely to be
readable only in 4 byte blocks.

Windows XP does use OHCI features to implement protection mechanisms to prevent
random devices from reading any memory location. Adam Boileau,“TMASKY” and others
have shown [Boi06] that, by pretending to be a device like an iPod, which “deserves” DMA
(in terms of marketdroid4-logik), it is possible to circumvent this “protection” and to trick
Windows into giving an attacker DMA. This attack is as simple as reading an iPod’s
config rom from its CSR and using libraw1394’s raw1394 update config rom() to use
the copy. Adam Boileau has implemented a simple script to do this. We have written our
own tool in C using libraw1394, which is located in 1394csrtools/.

2.3 Filedescriptor: /dev/mem, memory dumps

Another source for physical memory may be given to an attacker via a filedescriptor. This
filedescriptor may refer to a memory dump or the Linux /dev/mem device. In case of a
plain memory dump, many of the mentioned problems lapse: no caching will be performed,
no concurrent process will change the dumped data. In the case of a filedescriptor referring
to /dev/mem, other accessors will exist, as /dev/mem is referring to the systems memory;
caching on the other hand should not be a problem as we are not circumventing any
caching system (like the CPU), but directly using it.

2.3.1 Problems with /dev/mem, solutions

/dev/mem on Linux has one other, major problem: On 32 bit systems, the virtual address
space has a size of 232 bytes, i.e. 4GiB. The virtual address space of a Linux process is di-
vided into a userspace-part, where code, libraries and stack are mapped, and a kernelspace-
part, where the complete kernel, data structures and the kernel-stack of this process are
located. The userspace thread will not be able to access the kernelspace pages; but when
the userspace process calls a system call, the CPU will jump into a different protection level
and execute the system call entry code, which is part of the kernel. At this time the kernel
runs in the same virtual address space, just at a different protection level. Default kernel
configs divide the 4GiB virtual address space into a 3GiB userspace-part (0x0000 0000

- 0xbfff ffff) and a 1GiB kernelspace-part (0xc000 0000 - 0xffff ffff). Different
kernel config options (CONFIG VMSPLIT 3G, CONFIG PAGE OFFSET) can change the split ra-
tio, but the splitting itself is a basic design decision and thus a requirement for Linux
to work. In the upper kernelspace-part, the lower physical memory will be fully mapped

4see jargon-files, http://catb.org/esr/jargon/html/M/marketroid.html

http://catb.org/esr/jargon/html/M/marketroid.html
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(up to about 900MiB), the kernel will - in this case - be located at roughly 0xc100 0000,
i.e. at the physical address 0x0100 0000. During kernel configuration, these 900MiB are
called “precious lowmem”, because it is the only memory accessible by the kernel in a sim-
ple manner. When allocating kernelspace structures - this includes all address translation
tables 5 - the kernel will normally only use this lowmem. The /dev/mem driver will access
this lowmem, when a userspace process utilizes it. But if the process tries to read more
than the mapped lowmem, /dev/mem will fail to return this, as it is not mapped in the
process. Thus, when using /dev/mem, only approx. 900GiB lower physical RAM will be
accessible.

It may be possible to work around this restriction: As stated, all address translation
tables are located in the accessible memory. A process could try to find its own pagetable
and manipulate it to map other regions of physical memory into its userspace section;
then, no further access to /dev/mem would be required. As the reader will see in section
3.3, identifying processes in Linux can mostly be as easy as looking at the upper userspace
stack page. Research on a system with 1.5GiB RAM has shown that most of these pages
will be in the unmapped area, thus many of the processes will not be identifiable by this
method. To make its own pagedirectory identifiable from the others, a process may e.g.
map a random file at a typically never used address (e.g. 0x6000 0000), make sure the
mapping was successful, access this file (to prevent a missing mapping-on-demand) and
then search for the signature in all found pagedirectories. When found, it may map this
pagedirectory at a special location and directly manipulate it. It should be taken care of
the problem that a manipulated pagedirectory will only be reloaded into the CPU after a
re-scheduling of the process, but a simple usleep() should suffice. The author is not sure,
under which circumstances the Linux kernel does manipulate a process’s pagedirectory;
but obvious things like mapping new regions or unmapping mapped regions by system
calls should be avoided, as the system may overwrite the manipulated pagetable with a
new, adjusted one.

2.4 Other sources

The ideas described in this paper should be easily adoptable to all memory sources giving
access to physically addressable memory, this may include e.g. remote management cards,
suspend-2-disk images or virtual machines that have an interface to access the virtual
machines‘ memory. qemu is such a virtual machine, providing a gdb remote stub to attach
a debugger.

To use a new physical source with the methods introduced in the later sections, it is
only required to write a new backend for libphysical.

5on IA-32, these are: pagedirectories, pagetables, local- and global descriptor tables
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3 Translating virtual to physical addresses

3.1 Basic address translations

All multitasking environments that fulfill current requirements have to provide virtual ad-
dress spaces for each running process or thread. For performance and security reasons this
address translation from a processes virtual address to an address valid in physical memory
is normally performed in hardware. These mechanisms can include e.g. segmentation and
paging.

A normal process’s memory is divisible into several blocks or segments: the code seg-
ment contains all the code that may be run; the data segment contains the static data that
is known at compile time, global structures or deliberately allocated memory (including
the heap); the stack segment contains the stack, including local variables. On some archi-
tectures, it is possible to assign segment descriptors, referring to defined memory regions,
to segment registers. This assignment will influence the further behaviour of address trans-
lation: all addresses will from there on be taken to be relative to the bound of the memory
region specified by the segment descriptor. This mechanism is called segmentation.

Paging will divide the virtual address space of a process into several consecutive frames
of a specific page-size (typically 4096 bytes). Virtual addresses can be split into frame
number and frame offset; the frame number is translated (mapped) via a translation table
into a physical page number and the frame offset is used as an offset into this physical
page. If a frame does not have a corresponding physical page, it is called to be unmapped.
Unmapped pages can be non-existing pages or can e.g. be swapped to slower media like
harddisks.

For a detailed description and discussion of these two important mechanisms, the
reader may refer to a course on system programming, e.g. [S+02].

liblinear provides a software solution for address translation. The provided in-
terface is similar to libphysical; it needs a physical memory source (in form of a
physical handle), and information about the target architecture. It provides some func-
tions to find address translation tables in the raw memory and functions to use them to
access the induced virtual address space.

3.2 Example implementation: IA-32 backend for liblinear

On the IA-32 architecture, the CPU can run in various modes of operation; for modern
multitasking operating systems the protected mode is the preferred one. The protected
mode can use a two-level address translation: first it will translate the logical address,
consisting of a segment selector (which is an index into either the local or the global
segment descriptor table) and an offset to the linear address. The linear address is then
translated via paging to the physical address. (The paging translation is optional and
needs to be enabled by setting a special flag in a control register of the CPU.)

A Linux process runs in a simple 4GiB flat virtual address space; no segmentation is
required. Thus, Linux will create (among others that are not of interest for us) four special
segments during boot-up: for each privilege level (i.e. kernelspace and userspace), it will
create segments for both code and data. These four so called flat segments will span the
full virtual address space of 4GiB, thus effectively eliminating segmentation. The address
of the global descriptor table, holding the description of these segments, is then loaded into
the global descriptor table register (GDTR) and the specific segment registers are loaded
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with segment selectors referring to the segments6.
The IA-32 architecture divides the 4GiB virtual address space into 1024 4MiB-frames.

This splitting is defined by the pagedirectory. Each entry of a pagedirectory is 4 bytes long,
thus the pagedirectory is 4 · 1024 = 4096 Bytes long. Each of these pagedirectory entries
(PDEs), if present (its PRESENT-flag is set), can either refer to a 4MiB physical page or a
pagetable dividing this virtual 4MiB frame further into 4KiB frames. A pagetable is again
consisting of 1024 4-byte pagetable entries (PTEs), each corresponding to a 4KiB frame.

Figure 1: IA-32 Segmentation and Paging process (image taken from [Int06d])

As newer IA-32 CPU features like 36 bit page size extension (PSE-36) and physical ad-
dress extension (PSE) are not used in case of the proposed circumstances7, their reflection
is omitted here. Furthermore it is not always possible to know from the physical memory
only, if these features are enabled. A sample-installation of a system to be attacked should
give these informations. Also, PAE and PSE-36 are not yet implemented in liblinear.
PSE though (not PSE-36) is enabled with the given options (and implemented), as one
can determine by the use of 4MiB-pages.

6This initialization is done in linux/arch/i386/kernel/head.S, GDTs are defined at symbols
boot gdt table and cpu gdt table

7CONFIG NOHIGHMEM or CONFIG HIGHMEM4G, CONFIG VMSPLIT 3G
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For an extensive documentation of the IA-32 architecture one should refer to the Intel
64 and IA-32 Architectures Software Developer’s Manual ([Int06a, Int06b, Int06c, Int06d,
Int06e]), especially [Int06d].

3.3 Finding address translation tables

When accessing a range of memory via physical addressing, it is necessary to find address
translation tables to make sense out of the vast, unsorted number of pages. Typically,
translation tables are not marked as such and as we can not access the processor or the
operating system to ask, where these are, we have to search them. The following methods
have proven themselves when being combined: for all pages: make a simple test if a page
could be a pagedirectory (3.3.1) and if so, analyse this page in detail (3.3.2).

3.3.1 OS and architecture dependencies; typical address space layout

Obviously, address translation tables are architecture and operating system specific; but
within an architecture and an operating system, they will often share data or specific
patterns that are identifiable. For instance, when searching for Linux IA-32 address trans-
lation tables, one can omit searching the segment descriptor tables (see section 3.2) and
concentrate on finding pagedirectories. There are several special patterns that can be
found in a typical pagedirectory of a Linux process running on IA-32. Following is a
layout of the typical virtual address space of a userspace process:

Figure 2: Layout of the virtual address space of a typical Linux process

• code and heap will be starting somewhere around 0x0800 0000, consecutively fol-
lowing with a minor number of unused frames in between
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• libraries and custom mappings will be mapped below 0xb800 0000

• the userspace stack will be mapped somewhere below 0xc000 0000, possibly directly
starting from 0xbfff ffff

• starting from 0xc000 0000 up to approx. 0xf800 0000 the “lowmem” (approx.
lower physical 900 MiB of physical RAM) will be mapped

• the kernelspace stack will be located somewhere in this lowmem

• several so far unidentified pages are mapped after 0xf800 0000

• all unused frames will have 4-byte entries consisting of zeroes (0x00 00 00 00)

Stack- and memory randomization techniques like PaX randomize the base addresses
of these locations within several pages, but the general layout stays the same.

Besides searching pages that show non-zero values around these positions and zero val-
ues elsewhere, it is much easier and faster to just check, if the virtual address 0xc000 0000

maps to the physical address 0x0, because typically the PDE for 4MiB-page no. 0x300
will point to the 4MiB physical page at 0x0. This test only requires reading the 4byte
PDE entry 0x300 and does sort out a vast majority of non-pagedirectory pages.

Furthermore in the combination Linux/IA-32 we only have to search the lower 1GB of
RAM for pagetables (see first paragraph of section 2.3.1).

3.3.2 Matching via statistics: NCD (normalized compression distance)

For a detailed introduction to and analysis of the NCD and sample applications, the reader
may refer to [LV97] and the below given texts.

The normalized information distance (NID), a form of parameter-free similarity dis-
tance measurement, can be understood as a measurement for the minimal amount of
changes required to change one information into another one. A NID of 1 means that
two informations are totally unrelated; a NID of 0 means that they are the same. Due to
its relation to the Kolmogorov complexity (a measurement for an information‘s shortest
description in a fixed description language) it is incalculable. As an approximation, it is
possible to use data compressors instead of the Kolmogorov complexity to measure the
size of a minimal representation of information.

The resulting normalized compression distance has proven to be useful in a vast area
of applications; for instance, it has shown its usefulness during analysis of DNA sequences
or languages for relatedness ([CV05, LCL+04]), MIDI music files for relations in style and
creator ([CV05]) and attack schemes of viruses and worms ([Weh05]).

As the NCD is only an approximation of the NID based on compressors, its resulting
“normalized” value can be slightly larger that 1.0 and will never reach 0.

liblinear uses the NCD to measure the distance between a known true pagedirectory
and a page of unknown data to determine whether this page could be a pagedirectory.
The NCD has been chosen, because it is a parameter-free measurement, i.e. it does not
depend on specific, known structures of the data in question. As different architectures will
have significantly different address translation schemes, even depending on the operating
systems used, this choice should be adequate. The complearn-toolkit 8 provides a suite of
functions for generating NCD distance matrices between information, generating relational

8complearn-toolkit: http://complearn.org/

http://complearn.org/
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trees from these and more. As we only need to compare two pages, this set of functions is
far too big and the interface far too complex for this application. Thus, we implemented a
very short version of the NCD (simple ncd() in liblinear/simple ncd.c) using BZip29

as compressor.

4 Attacking

Subsection 4.1 will discuss passive attacks that only read from a physical memory source.
An overview over gathering information from a virtual address space is given, including
finding processes on a host, obtaining its environment, arguments and the path of the
processes binary. After that a deeper attack is introduced that is capable of copying ssh
public/private keypairs from a running ssh-agent process.

In subsection 4.2, we will introduce attacks that change data in the virtual address
space. Further details about executables, libraries and processes will be given as an in-
troduction. Then we will show how to find mapped libraries, binaries and the stack of a
process and how to inject shellcode into a running process (its stack), then introduce a
special shellcode that can be used to obtain an interactive shell over firewire only.

4.1 Information Gathering

4.1.1 Identifying processes

Once an address translation table has been found, it is of interest, what kind of process
resides in this virtual address space. For userspace applications on IA-32-Linux there
is a simple way to identify a process’s filename, its arguments and even its full set of
environment variables: This information is often required by a process and thus the kernel
will provide it to the process by copying it to the bottom pages of the application’s stack10.

proc info() will seek the stack-bottom, parse it and return ready-for-use environment
vectors, command-line vectors and the full path of the binary for a given linear address
space. remote-ps, located in attacks/information/, uses proc info() for each found
address space and will print a list of all found processes with its arguments.

4.1.2 Typical places to find secrets

Many applications keep secrets in their memory, some of them even locking them into the
main memory11 to prevent the operating system from swapping them to slower (perma-
nent) media. While in general this is a good idea, as an attacker may reconstruct the data
from e.g. thrown-away harddisks, it increases the chance of an attacker that can obtain
access to the memory of the system in question, as the secret material will be stored in
memory completely and unfragmented

“Secrets” includes, among other information, authentication data, cryptographic key
material, random data (e.g. to seed a cryptographic algorithm) and sometimes even algo-
rithms (proprietary software). Authentication data can be e.g. passwords or private keys
for signature algorithms. Cryptographic key material, as the name says, are keys for usage
with cryptographic algorithms (like the above signature algorithms). These two will be of
main interest in this section.

9BZip2: A high-quality data compressor, http://www.bzip.org/
10i.e. the stack-pages that are found first when seeking downward from virtual address 0xbfff f000
11e.g. via the mlock function

http://www.bzip.org/
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Many applications using a cryptographic infrastructure for communications will keep
once loaded passwords or keys in their main memory for successive usage. The operating
systems protection model ensures the safety of this information from other processes run-
ning on the same system; but by accessing the main memory we do have full access to this
material. The only task that remains is to reconstruct the key material and passwords
from the memory.

As an example, the following applications are of interest:

• GnuPG and PGP: applications to sign and encrypt arbitrary data with public/pri-
vate keypairs. They are wide spread for email-encryption and -signing.

• sshd, ssh and ssh-agent: the secure shell application is an extended, encrypted ver-
sion of telnet using strong cryptography, including passwords, skey, x509 certificates,
RSA and DSA keys.

• Apache and other SSL-enabled web servers.

• OpenVPN, Cisco-VPN and other VPN-servers and clients

• Instant Messaging Applications, e.g. Psi keeps the authentication information and
possibly the GnuPG keypair in memory.

• The computer BIOS password, ATA password or PGP-Wholedisk password: the
computer or its drives can be locked with a BIOS password or the harddisk can be
encrypted. For a sample attack, see [Boi06].

4.1.3 Example attack: ssh-agent snarfer

To proof that it is easy to obtain secret keys from a process we have written a sample
attack to obtain (snarf12) ssh public/private keypairs from ssh-agents via firewire.

When using ssh for accessing remote computers it is possible to authenticate via pass-
words, public/private keypairs and various other methods. The usage of public/private
keypairs is wide-spread among people using ssh on a regular basis. These keypairs can
either be a DSA or a RSA keypair, they are typically created with ssh-keygen and stored
somewhere in $HOME/.ssh/, e.g. /root/.ssh/id dsa and /root/.ssh/id dsa.pub. Key-
pairs can and should be encrypted with a passphrase to prevent attackers from using them,
if they were able to obtain them somehow. Thus to use a keypair it is required to enter
this passphrase each time. This can be disturbing during frequent usage, e.g. when using
ssh+svn or scp with remote-tab-completion (zsh is capable of this).

For these and other reasons, the ssh-agent has been developed. This agent will run
in the background; the user can store a keypair into it (once entering the passphrase to
unlock the keypair) and successively use the keypair without the requirement to enter the
passphrase each time. The keypair can be wiped from memory on demand and also be
loaded only for a specified period of time.

During our tests we found that the key is not wiped from memory when the time limit
is hit. It will be wiped the next time the ssh-agent is queried (via its socket), but the agent
is stalled in a read system call until this query and thus can not wipe the key. That makes

12to snarf: To grab, esp. to grab a large document or file for the purpose of using it with or without
the author’s permission. // To acquire, with little concern for legal forms or politesse (but not quite by
stealing). (source: Jargon Files)

http://catb.org/jargon/html/S/snarf.html
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it possible to obtain long overdue keys from ssh-agents, although their owners believed
them to be safe. A simple timer could have prevented this13. But even with such a timer
enabled it would be possible to acquire the key during its lifetime.

To obtain a keypair from an agent via firewire, a staged attack is required:

1. Seek the first GiB of physical memory for pagetables.

2. For each pagetable: check with the introduced proc info(), if the found userspace
belongs to a ssh-agent process. If not, seek next pagetable.

3. Use the obtained environment to resolve the users home directory ($HOME) and create
a path where keypairs most likely reside in the file system (e.g. “$HOME/.ssh/”) and
seek this string in the heap. This approach will only find keypairs that have been
loaded with this key-location.14 Keypairs loaded from different locations or via a
relative path can thus not be found by this search.

4. All loaded keypairs have a corresponding identity-struct in an agent (see figure 3).
Among other fields, this identity-struct contains a link to a key struct, the above
mentioned path/comment-field and the lifetime of the key. Thus to find the identity
struct corresponding to a found comment-field, one has to search the address of the
comment-field in the heap of the agent.

1 typedef struct i d e n t i t y {
2 TAILQ ENTRY( i d en t i t y ) next ;
3 Key ∗key ;
4 char ∗comment ;
5 u i n t death ;
6 u i n t conf i rm ;
7 } I d en t i ty ;
8
9 typedef struct {

10 int n ent r i e s ;
11 TAILQ HEAD( idqueue , i d e n t i t y ) i d l i s t ;
12 } Idtab ;
13
14 /∗ p r i v a t e key t a b l e , one per p r o t o c o l v e r s i o n ∗/
15 Idtab id t ab l e [ 3 ] ;

Figure 3: openssh/ssh-agent.c: Identity structure and idtable

5. Once the key-struct (figure 4), that is linked to by the identity-struct, has been
found, one can determine whether the found key is a RSA or a DSA key. The key-
struct contains a type-field and two pointers to either the RSA or the DSA key.
These referenced structures are the OpenSSL15-structures RSA and DSA.

6. For both RSA and DSA structures (figure 5 and 6), all important fields need to be
recovered to obtain valid keypairs. [Sch96, MvOV01] give an overview of both cryp-
tographic algorithms, [VMC02] introduces OpenSSL concepts and implementation
details. OpenSSL‘s arbitrary precision integer implementation is the BIGNUM-struct

13We hereby strongly encourage the developers to implement such a timer!
14Actually this field is the key’s comment-field that is mostly unused and overwritten with the filename

of the key. Keypairs that are used with SSH protocol version 2 (virtually all) do not have a comment-field;
during loading, the comment-field is always initialized with the keys pathname.

15OpenSSL (http://openssl.org) is a free open-source implementation of the secure socket layer protocol
also providing a general purpose cryptography library (libcrypto).

http://openssl.org
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1 enum types {
2 KEY RSA1,
3 KEY RSA,
4 KEY DSA,
5 KEY UNSPEC
6 } ;
7
8 struct Key {
9 int type ;

10 int f l a g s ;
11 RSA ∗ r sa ;
12 DSA ∗dsa ;
13 } ;

Figure 4: openssh/key.h: Key-structure

(often abbreviated “BN”). It consists of a variable-length array of bit-vectors for-
ming the value and a length-field defining the length of this array (see figure 7). As
RSA and DSA both operate on finite fields, both are implemented with BIGNUMs.
Therefore, the RSA and DSA structures contain several BIGNUMs that need to be
recovered to obtain a valid copy of the keypair.

1 /∗ Declared a l r e a dy in o s s l t y p . h ∗/
2 /∗ t y p e d e f s t r u c t r s a s t RSA; ∗/
3 struct r s a s t {
4 int pad ;
5 long ve r s i on ;
6 const RSA METHOD ∗meth ;
7 ENGINE ∗ engine ;
8 BIGNUM ∗n ;
9 BIGNUM ∗e ;

10 BIGNUM ∗d ;
11 BIGNUM ∗p ;
12 BIGNUM ∗q ;
13 BIGNUM ∗dmp1;
14 BIGNUM ∗dmq1 ;
15 BIGNUM ∗iqmp ;
16 int f l a g s ;
17 } ;

Figure 5: openssl/crypto/rsa/rsa.h: RSA structure (stripped down)

7. Some validity tests may be done to verify that the acquired BIGNUMs fulfill algorithm-
specific properties16 and thus form a valid keypair.

8. Attach the obtained BIGNUMs back into valid RSA or DSA structures and save these
keys to a file using openssl-functions.

As seen, the search algorithm (2,3,4) has its downsides but works astonishingly well17.
A much better algorithm to find the identity-structs is to use the ELF-headers of the
mapped executable to resolve the symbol of the idtable18. This approach is straight-
forward, hits all keys and should work almost always. The downside of this approach is
that most distributions distribute programs with their symbols stripped (due to size and
security reasons); this invalidates the symbol-resolution-approach, as this stripping also
removes any information of the idtable symbol.

16During development it was useful to test obtained keys for some properties that are required. These
tests are implemented in attacks/information/sshkey-sanitychecks.c

17To create a better algorithm remains as an exercise to the interested reader.
18The idtable is a structure referencing all keys that are loaded into the agent.
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1 /∗ Already d e f i n e d in o s s l t y p . h ∗/
2 /∗ t y p e d e f s t r u c t d s a s t DSA; ∗/
3 struct dsa s t {
4 int pad ;
5 long ve r s i on ;
6 int wri te params ;
7 BIGNUM ∗p ;
8 BIGNUM ∗q ; /∗ == 20 ∗/
9 BIGNUM ∗g ;

10 BIGNUM ∗pub key ; /∗ y p u b l i c key ∗/
11 BIGNUM ∗ pr i v key ; /∗ x p r i v a t e key ∗/
12 int f l a g s ;
13 const DSA METHOD ∗meth ;
14 ENGINE ∗ engine ;
15 } ;

Figure 6: openssl/crypto/dsa/dsa.h: DSA structure (stripped down)

1 /∗ Already d e c l a r e d in o s s l t y p . h ∗/
2 /∗ t y p e d e f s t r u c t b i gnum s t BIGNUM; ∗/
3 struct bignum st {
4 BN ULONG ∗d ; /∗ Poin t e r t o an array o f ’BN BITS2 ’ b i t chunks . ∗/
5 int top ; /∗ Index o f l a s t used d +1. ∗/
6 /∗ The nex t are i n t e r n a l book keep ing f o r bn expand . ∗/
7 int dmax ; /∗ S i z e o f t h e d array . ∗/
8 int neg ; /∗ one i f t h e number i s n e g a t i v e ∗/
9 int f l a g s ;

10 } ;

Figure 7: openssl/crypto/bn/bn.h: BIGNUM structure (stripped down)

Once one identity-struct is found, all structs of the same key-type (RSA or DSA)
could be found by walking the list this key is linked into.

As stated above, the keypairs reside decrypted in the memory of the agent (even if
overtime) and thus, when snarfed and stored to a file, can be immediately used by the
command ssh -i keyfile user@host19. Such an attack will not take much longer than
searching the first 1 GiB of physical RAM for pagedirectories, that is typically no more
than 15 seconds. If an attack fails but an agent was found, it would be possible to just
dump the heap of the agent and stage a more thorough attack at a later time. Once
the heap is dumped, all required data is obtained. A similar attack via ptrace should be
possible as well.

The reader may refer to attacks/information/snarf-sshkey.c in the corresponding
tarball for the source-code of the attack. Please keep in mind that this attack will only
find keys loaded with the absolute path $HOME/.ssh/.

4.1.4 Matching and statistics to find secret keys

[SvS99] introduces some schemes to find secret keys in random data and some counter-
measures. It takes a special look at finding private RSA keys if their corresponding public
keys are known and finding keys by searching high-entropy regions. Though we encourage
the reader to read this interesting paper, the circumstances are most likely very different
now: cheap and small storage media like flash-memory and small harddisks have increased
portable storage to a huge size, equal or larger than the memory a computer system ty-
pically has. Thus, an attacker can just dump the full memory or a subset of it (like the
virtual address space of a single process) that is promising to contain a secret. A tho-

19Only by stealing a key, an attacker will not know, which hosts can be accessed with a retrieved key.
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rough attack can then be staged later. Still, searching private keys with the introduced
methods can be very helpful, if reconstruction of the used data-structures is impossible
or more expensive. Furthermore, when trying to obtain a private key, often enough the
corresponding public key is unknown. This invalidates the approaches introduced to find
RSA secret keys that require the public key.

4.2 Userspace Modifications

Each executable object, including libraries and executables, can be separated into code
and data, where the code should be read-only during execution. The data can further
be separated into read-only data, read-write data and uninitialized global variables (local
variables will be allocated from the stack, runtime-allocated memory is allocated from the
heap). Thus an executable object may be split into four regions: code, rodata (constants),
rwdata and dynamic data (rwdata may also be implemented by copying the initial data
from rodata to dynamic data); stack and heap are process-specific.

As many different processes may use the same executable objects, it would be a waste
of memory if the operating system created a copy of the object for each reference to it.

Code and rodata may not be written to by a process, thus the operating system can
share these two regions among processes that are using the same objects (binaries or
libraries). Thus, once an operating system ensures that a process can not write to code-
regions and read-only data-regions or introduces a copy-on-write mechanism, it can map
these once loaded regions into multiple virtual address spaces. This enforcement is done
in hardware, on IA-32 by setting a flag in the page directory or a page table referencing
the specific physical memory pages containing the region.

Newer CPUs provide page-level no-execute enforcements (AMD’s NX No eXecute bit,
Intel’s EXB EXecute disable Bit); equal segment-level enforcements exist for years but
never have been used in mainstream as Linux and many other operating-systems use a
flat memory-model (with only one big segment spanning the full virtual address space).
Once these page-level enforcements are used in systems, attacks that inject code into
data-regions or the stack are rendered completely useless. However with access to the
data-structures (page directory and page tables) containing the information, which pages
are executable and which not, one can change this information before injecting code e.g.
into an applications stack.

On Linux, programs and libraries are in Executable and Linker Format (ELF). This
format is described in the manpage elf(5). When a binary is mapped into a process’s
memory, it is mapped including the full ELF header containing all information that is
required to link all references between different objects; ELFs are always mapped at page-
bounds. Due to this, all mapped ELFs (that includes executables and libraries) can
be found by scanning all pages for the ELF Magic (0x7f E L F) at offset 0 in the page.
Libraries, executables and other ELF objects can be distinguished by evaluating the e type

field of the ELF header.

4.2.1 Overwriting executable or library code

When code of executables or libraries is changed, all programs using these ELF objects
are influenced at the same time. An attacker thus has the ability, but also the burden,
to possibly infect several processes at the same time. Such an attack has to be carefully
prepared and conducted, as each system may have a different version of a binary and
overwriting the wrong parts of an ELF or writing the wrong code may result in an almost
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immediate crash of all processes using the ELF. Though this is an interesting approach,
there are easier ways to inject code into a single process (see 4.2.2).

Such an attack could be conducted by searching a single virtual address space for the
glibc and then parsing the ELF-headers and searching for the entry-point of the printf-
function (or some other, less frequently used function). Then a piece of code could be
injected into the unused fragment of the last page of the libc-mapping. It is important to
inject the shellcode into the mapping, as all processes that will be affected have to be able
to reach the shellcode. The intention is to overwrite the printf functions code with a
relative20 jump to this injected code. But as we need to overwrite some instructions inside
the function, we need to parse the functions code to separate each instruction21, so that
after our code is executed, it executes a copy of the overwritten instructions and jumps to
a fully intact instruction right after the injected jump. After this has been done, the jump
can be injected into the functions code. This last write has to be as atomic as possible, as
a process may just be executing these bytes and thus get astray. On IA-32, entry-points of
functions are most likely aligned to 32-bit addresses22. Firewire also provides an interface
to write 32-bit aligned 32-bit values (“quads”) atomically. Unfortunately, a relative short
jump (2 bytes) can only jump within ±256 bytes from the jump itself and relative long
and absolute jumps are 5 bytes wide (1 byte command + 4 bytes address). A short jump
is most likely incapable of reaching the last page of the ELF and writing a long relative
jump is not atomic.

A lot of interesting methods to inject code into a running process have been developed;
e.g. [Ano02] gives an introduction into using ptrace, including injecting whole shared
objects using the runtime linker libdl. The usability of this approach has not yet been
analysed.

4.2.2 Overwriting the stack and return addresses

Besides stealing SSH-keys, we have put most of our efforts into injecting code into the
stack and overwriting return-addresses on the stack to point to the injected code. This
modification of the classic stack overflow method has some advantages over the previous
approach:

• Each process, even each thread, has its own stack. Thus only a single thread will be
affected by the attack.

• If the attack fails and the thread dies, only a single thread will fail on the target
system, not e.g. all processes using the glibc or all instances of /bin/sh.

• The process can read and write to the stack as well, thus we can communicate with
the injected shell-code in a rather easy way (see 4.2.3).

• During the attack we do not need to modify parts of the code of the target-process,
reducing the risk of an astray process. The final part consists of overwriting 4 byte
wide return-addresses on the stack and this can almost always be done automatically.

20An ELF may be mapped at different locations in different processes, if it is “PIC” or “PIE” (Position
Independent Code/Executable) and the kernel supports this. Thus, unless the ELF is only mapped in
one process or the overwritten function is only used in one process, the jumps target has to be addressed
relative to the current position.

21on IA-32, different machine instructions can have different length
22due to optimizations by the compiler
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The attack consists of the following steps:

1. Search a free location in the stack-pages. If the shellcode is small, we can use the
zero-padded area of the pages containing the environment and argument vectors
(see section 4.1.1). If the shellcode does not fit into this area, we could try to just
overwrite these vectors. Most programs will parse environment and arguments only
once during startup of the program, thus this should be safe. On the other hand,
these vectors are also evaluates when a process accesses a processes procfs entries
/proc/$PID/environ and /proc/$PID/cmdline. Thus if these are overwritten with
random data, it is possible to see the difference by querying these procfs-entries or
using ps23.

2. Scan the stack for stack-frames and for each found: overwrite the return address.
This can be simplified into: overwrite all 32-bit aligned 32-bit values that contain a
value that might be a pointer into the main code area (0x08** ****, see figure 2)
with a pointer to the injected code. A more aggressive approach might also overwrite
return-values pointing into the library section (0xB7** ****).

Once the attacked process leaves a stack frame with an overwritten return value, it
will jump to the injected code and execute it.

An implementation of this attack, including some sample shellcodes like a bindshell and
a simple printf can be found in attacks/userspace/inject-code.c and
attacks/userspace/shellcodes/.

4.2.3 Direct communication with shellcode via DMA

The royal league of shellcode-writing is a shellcode that spawns an interactive shell (thus
the name “shellcode”) and yet is as invisible on the target system as possible. An inter-
active shell has to communicate with its user, so typically a network-based bindshell is
used for this attack. The downside is the visibility of the communication on the network-
layer: an administrator can easily spot the network connection by either sniffing on the
network or by asking the system what kind of sockets and files a process is using24. A
network intrusion system (NIS) can easily spot bindshell connections in an automated way
or firewalls could be configured in a way that a network connection is impossible. When
using e.g. firewire to attack a host it is even possible that there is no network connection
between the attacker and the victim at all.

The bindshell approach has obvious disadvantages. Thus we will use the same attack
vector that has been used to inject the “beachhead”: physical memory access.

The overall mechanism is introduced in figure 8. The injected shellcode will fork a
shell and communicate with stdin/stdout of the shell via two pipes. The shellcode then
creates a second thread, then having one thread for each direction of master to shell and
shell to master. If the master (attacker) wishes to send a command to the shell, it writes
the command string into the FromMaster ring-buffer via DMA. Once the ReaderThread
sees that the ring-buffer is not empty, it reads the data inside the buffer and writes it into
the pipe to the shell. The WriterThread will read data coming from the shell from the
pipe and then write it into the ToMaster ring-buffer, so the master can read it via DMA.

23ps relies on these procfs entries
24e.g. by using lsof -i (LiSt Open Files)
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The shellcode of the beachhead (attacks/userspace/shellcodes/dmashellcode.s)
is introduced in figure 9 in pseudo-code. The program to inject the shellcode and commu-
nicate with it is attacks/userspace/dmashell.c.

Figure 8: Functionality of the beachhead

5 Future prospects

5.1 Kernelspace Modifications

The Linux character device /dev/kmem gives a process read and write access to its virtual
address space, including the kernel-space area. /dev/kmem has not only been used for its
legitimate purpose (i.e. debugging the kernel) but also to inject code into the running
kernel and install kernel-based rootkits. [sd01] describes an attack using /dev/kmem to
inject a new syscall-handler (a regularly used rootkit technique).

5.1.1 Emulating /dev/kmem

As /dev/kmem gives a process access to its virtual address space without any restrictions,
it is yet emulated by liblinear, as liblinear provides the same functionality, once it
has been loaded with a pagetable of a random process. A pagetable of any process will
include the fully mapped kernel space (“lowmem”, see section 2.3.1 and section 3.3.1).

On the other hand, some new problems come up, if the attacker can not access CPU-
registers like the IDT25, but wishes to know the location of the system call table. If it is
necessary to resolve kernel symbols and the to-be-attacked kernel is LKM26 capable, an at-
tacker could inject a special shellcode to resolve all required symbols via get kernel syms

or inject a LKM and let the kernel do the job. If however an active approach is impossible
or the kernel is not LKM capable, statistic approaches might be necessary.

5.2 Bootstrapping custom operating systems

As an attacker has complete access to a systems memory, it is possible to take over the
system completely, reset it to a known state and boot a custom operating system on it (and

25Interrupt Descriptor Table
26Loadable Kernel Module
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1 // r i n g b u f f e r f o r data from beachhead to master
2 RingBuffer ToMaster ;
3 // r i n g b u f f e r f o r data from master t o beachhead
4 RingBuffer FromMaster ;
5
6 // p ipe f o r data from beachhead to s h e l l
7 int ToShel l [ 2 ] ;
8 // p ipe f o r data from s h e l l t o beachhead
9 int FromShel l [ 2 ] ;

10 // f l a g , i f p i p e s are s t i l l v a l i d ( v o l a t i l e b ecau se two th r ea d s ac c e s s i t )
11 vo lat i l e bool p ipes ok = 1 ;
12
13 int c h i l d p i d ;
14 // s e t by master i f c h i l d shou ld be k i l l e d
15 vo lat i l e bool t e rmin a t e ch i l d = 0 ;
16 // s e t by beachhead to s i g n a l dea t h o f c h i l d
17 bool ch i l d i s d e a d = 0 ;
18 // s e t by master t o acknowledge dea t h o f c h i l d
19 vo lat i l e bool ch i ld i s dead ACK = 0 ;
20
21 s t a r t :
22 p ipe ( ToShel l [ ] ) ;
23 p ipe ( FromShel l [ ] ) ;
24 switch f o rk ( ) {
25 case ch i l d :
26 dup2 ( ToShel l [ 0 ] , s td in ) ;
27 dup2 ( FromShel l [ 1 ] , stdout ) ;
28 dup2 ( FromShel l [ 1 ] , s t d e r r ) ;
29 execve ( ”/ bin /sh” ) ;
30 // on f a i l u r e : e x i t .
31 e x i t ( ) ;
32 ; ;
33 case parent :
34 c h i l d p i d = retu rnva lue o f f o rk ;
35 c l o s e ( ToShel l [ 0 ] ) ;
36 c l o s e ( FromShel l [ 1 ] ) ;
37 // c r e a t e a second th r ead ”WriterThread ”
38 c l one ( WriterThread ) ;
39 // cu r r en t t h r ead becomes ”ReaderThread”
40 goto ReaderThread ;
41 ; ;
42 }
43
44
45 ReaderThread :
46 // the ReaderThread w i l l read from the master and r e l a y t o t he s h e l l
47 while ( p ipes ok ) {
48 i f ( t e rm ina t e ch i l d ) {
49 // a t t a c k e r r e q u e s t e d s h e l l t o be t e rm ina t ed
50 k i l l ( c h i l d p id , SIGKILL ) ;
51 p ipes ok = 0 ;
52 // ReaderThread t e rm ina t e s , WriterThread w i l l do c l eanup
53 e x i t ( ) ;
54 }
55 i f ( isEmpty (FromMaster ) ) {
56 s l e ep (0 . 001 seconds ) ;
57 } else {
58 i f (1 != wr i t e ( ToShel l [ 1 ] , FromMaster . bu f f e r
59 +FromMaster . currentLocat ion , 1 byte ) ) {
60 // can not communicate w i t h c h i l d
61 p ipes ok = 0;
62 } else

63 FromMaster . cu r r en tLocat i on += 1;
64 }
65 }
66 ex i t ( ) ;
67
68 WriterThread :
69 // the WriterThread w i l l read from the s h e l l and r e l a y t o t he master
70 while ( p ipes ok ) {
71 i f ( i s F u l l ( ToMaster ) ) {
72 s l e ep (0 . 001 seconds ) ;
73 } else {
74 i f (1 != read ( FromShel l [ 0 ] , ToMaster . b u f f e r
75 +ToMaster . currentLocat ion , 1 byte ) ) {
76 // can not communicate w i t h c h i l d
77 p ipes ok = 0;
78 } else

79 ToMaster . cu r r en tLocat i on += 1;
80 }
81 }
82 // p i p e s are c l o s e d . t e l l t h e master , bu t wa i t a t most 2 seconds
83 while ( ! ch i l s i s dead ACK && ch i l d i s d e a d <= 2) {
84 ch i l d i s d e a d++;
85 s l e ep (1 second ) ;
86 }
87 ex i t ( ) ;

Figure 9: Beachhead shellcode (dmashellcode.s), pseudocode
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e.g. use firewire storage as the root-device for the new system). A special bootloader would
be required to do this and it might also be necessary to reset the system and attached
hardware in a special way, depending on the operating system running on it before the
approach.

6 Conclusion

Though some problems remain, it has been shown that firewire and other DMA technology
are a mature attack vector having a serious impact on a systems security. DMA interfaces
should always be sealed or disabled if untrusted persons can access them; this particularly
includes laptops, as more and more of them are equipped with a tiny firewire port. Security
“solutions” that deny DMA for some devices and allow DMA for others should be tested
very carefully, as these schemes may be fooled by pretending to be a different, “trusted”
device (see [Boi06]).

Though most of the tools introduced are designed to attack a system, libphysical
and liblinear can also be used for forensic purposes to analyse memory dumps (with
the filedescriptor backend). The statement “There is little experience in reconstructing
logical/virtual memory from physical memory dumps” from [BDK05] is no longer true:
liblinear can be used to access virtual address spaces of each process (independent of
the operating system), e.g. IDETECT (by Mariusz Burdach, [Bur06]) can be used to
analyse kernel data structures to obtain other information.
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